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A Note on C° Galerkin Methods
for Two-Point Boundary Problems

Miente Bakker

Mathematisch Centrum, Kruislaan 413, 1098 SJ Amsterdam

Summary. As is known [4], the C° Galerkin solution of a two-point
boundary problem using piecewise polynomial functions, has O(h?*) conver-
gence at the knots, where k is the degree of the finite element space. Also, it
can be proved [5] that at specific interior points, the Gauss-Legendre
points the gradient has O(h**!) convergence, instead of O(k*). In this note,
it is proved that on any segment there are k—1 interior points where the
Galerkin solution is of O(k**2), one order better than the global order of
convergence. These points are the Lobatto points.

Subject Classifications: AMS (MOS) 65N 30; CR: 5.17.

1. Introduction

We consider the two-point boundary problem

Lu= —(p(x)u) +q()u=f(x), xe[0.1]=1;

u(0)=u(1)=0. )

We suppose that p, g and f are such that (1) has a unique and sufficiently
smooth solution.

Let, for a constant integer N, 4:0=x,<x, <...<x,=1 be a partition of [
with

h=N"';  x;=jh; I,=[x;_,,x;

and let for a constant integer k=2 and for any interval Ec I, E(F) be the class
of polynomials of degree at most k restricted to E.
We define for m=0 and s=1
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Wms(E)={v| DI ve[}(E), j=0, ..., m};
H™(E)= W™ (E);
Hy(h={v|veH'(I};v(0)=0(1)=0};
ME(A)={v|veH)(I); veR(I).j=1.....N};

[0l .y = LZO 1o’ U“xsz)] i§

1

HUHH"’(E) = [ZO (DJ v, DJ I))LJ(E)] 5
j=

2

where D/ denotes d@//dx’. If E=1, we write (o, ) instead of (x, f),., and ||,
instead of [[o]| yom(y)-
Let UeM¥(A) be the unique solution of

B(U. V)=(f, V). VeM(4), (3)
where B: H{(I) x Hy(I)> R is defined by
B(u, v)=(pu’, v')+(qu, v); u, ve H(I). 4
We assume that B is strongly coercive. ie. there exists a C>0 such that
B(o.0)zCllo|?.  veH)(D). (5)
In the sequel, C. C,, are generic positive constants not necessarily the same.

Lemma 1. Let ue Hi(I)n H** ' (I) be the solution of (1) and let UeM¥(A) be the
solution of (3). Then the error function e(x)=u(x)— U(x) has the bounds

lell < CH =l 1=0.15
() S Ch¥ ull, . j=L...N—1; (6)

el L'x»mé Chitt l[u([H 1

Proof. See [6], [4] and [7]. OJ

In the next § we prove that the local order of convergence improves
slightly at specific points interior to I, if u satisfies stricter smoothness require-
ments on the interior of I;.

2. Order of Convergence at Lobatto Points

On the segment [ —1, +1], we define the Lobatto points g, ..., 0, by
o d
(I—G,)I‘—B((O',)=0, [=0, ...,k (7)

where E(o) is the k-th degree Legendre polynomial. Associated to this poly-
nomial is the quadrature formula (see [ 1, formula 25.4.32])
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+1 k (k+1)k322k+1[(k_1)!]4
=V — (2k) _
ﬁflf(a) do Py w, f (o)) KT DT SEs), se(— 1, +1) o
2
Ml=m. l=0,,k
From (7) and (8), we define
Cﬂ=xj71+g(1+a,); [=0,....k; j=1.....N;
h k
(o B =3 oWl B a peW (), j=1....N; ©
=0
N
(o Bly= ) (o P)F.
i=1
We return to problems (1) and (3). It is known that
B(e,V)=0, VeM~i(A). (10)
For any I;, we define
MA(L)={V|VeMb(a), supp (V)=1,}. (11)

We temporarily drop the subscript j from the numbers ¢;;. We define a natural
basis {¢;}i=] for M,(()(Ij) by

P(E)=06,. 1=L1sk—1, (12)
where 0, is the Kronecker symbol. If we elaborate (10) for V=¢,, i=1,....k
—1. we get

(e.Lo)=[p(x)e(x) pi(x)]ss, i=1.....k—1. (13)
Approximation of (e, L¢,) by Lobatto quadrature yields
k—1
Y wiLo(&)e)
=1

=2h"[p(x) e(x) Pi(x)] & —wq e(&o) Ldi(E,) (14)
—w, e(E) L&)+ Ch*D¥*(eLg)(Eel),  i=1, ... k—1.

This is a linear system for e(&)),...,e(¢, ;). We have to prove the non-
singularity of (w,L¢,(&,)) and to compute the order of the solution. We know
that

hB(d’,w (}5,)=l’l(L¢,-, d)z)
k-1
=2 Y w, Lo (£,) ¢i(E,)+ Ch*+ 2 DML (&) d,(E). Eel;

=h?w,Lo,(&) + Ch*+2DH(Le,(8) (&), L€l
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Hence we have
[hB(;, b)) —h* w, Lo (&)< Ch. (15)

This means that M, =(h*w,L¢,(£)) is nearly equal to a symmetric positive
definite matrix whose entries and positive eigenvalues are of O(1) and con-
sequently has an inverse with the same properties. If we represent (hB(¢;, ¢,)
by M ,, we find that

M,=M,+hM,=M,(I+h*M;'M,).

where all M, have entries of O(1). Since the spectral radius of the perturbation
matrix is of O(h?), it is evident by power series expansion that

M;'=M;'+h*M

where the entries of M, are of O(1). This proves that M5 ' has entries of O(1)
and so we have that (w,L¢,(£))~ ! has entries of O(h?).

We turn to the second part of our problem. The first three terms of the
right hand side of (14) are of O(h%*~?||u|,, ,). For the last term, we prove that

D (e Lo oia S Cllellwaesoy I LPill war.oqa - (16)
From [3], it can be proved that

Chk+1_l||u”k+17 l§k7

ID'efl puogs,) = a7
L>(l;) HDlu”Lw(IJ)a I>k.
Furthermore,
Ll aw, o < Ch™H, (18)
hence we summarily have
) e(éz)\ S CHT Ny B2l o))
! (19)

i=1,... k-1
This was the last step in the proof of

Theorem 1. Let ue H (I)nH ' (I)n ﬂ W2?*(I) be the solution of (1) and let

UeME(4) be the solution of (3). Then the error function has the local error
bound.

le(€ I S CH*2[lullyy o B2+l oeogr ) )s

20
j=1,...N; I=1,...k—=1. O (20)
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3. Lobatto Quadrature

Usually, B( , ) and ( , ) are to be evaluated by numerical quadrature. We will
show that Lobatto quadrature leaves the order of convergence at the Lobatto
points invariant.

We define

N
Bh(av ﬁ):(pa/’ B/)h_*_(q(x’ ﬁ)h’ o, BE ﬂ WZk‘OO(Ij)v (21)
j=1
where ( , ), is defined by (9).
Lemma 2. Let YeMY¥(A) be the solution of
B(Y.V)=(£V), VeMi(4) (22)

and let ue Hy()nH** ()~ ﬂ W?2k=(1) be the solution of (1). Then the error

function n=u—Y has the bounds
NS Ch*| flly i j=1,....N—1,

if h is small enough, with

114~ 217, @

Proof. See [4]. [

We now consider ¢(x)=U(x)— Y(x), where U is the solution of (3). From (3)
and (22), we obtain for every I;

IB(e. V) SIS V)~ (£ V)il +1By(Y. V)= B(Y. V)
< CH* YWY g LS Ny 1 D). VEMB(L),

If we take for V any of the basis functions ¢, of M'(‘,(Ij), as defined by (12), we
have

|B(e, d)i)l§Chk+1[||f”H2"(Ij)+”Y”H"(IJ)]’ i=1,....k—1 (25)
Since
k-1
Z w,e(&) Lo, (£)=2h""'B(e. $,)
=1
—wo &(&o) LP(Eo) —w, e(Ey) Lo (E) (26)
—2Tp(x) ) S0 + CHADH L) (Eel)

and

ID**(eLgp, )”Lmuj) Cllellwr, s (1, )||§b fl . (1)

(27
S Ch |e] oy y S Ch | f i,
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we have

k-1
Z w, e(£) Lo,(S)

=1

SCORT S Moy + 1Y fae )]

+ G [l s+ C W i o

(28)

The nonsingularity of (w,L¢,(¢)) has already been proved, its inverse is of
O(h?), hence we have

eEN= Co R 2L gty H 1Y Wi ) 1+ Co 21 g, e (29}
Since (see [3]).

DY oty S 1y 10 s S CR Il + it
=C| u”k+ 1

we can prove by combination of (20), (29) and (30)

N
Theorem 2. Let ue Hy(I)n H** /(1) ) W2E=

T
(I,) be the solution of (1) and let Y j\/I’g(A) be the solution of (22). Then the error
Sfunction n has the bounds

EMN S Co 2L f oy + Ml 11+ Co 20 1l s
j=1,...N; I=1.. k-1 [O

4. Conclusions

We have found a weaker form of superconvergence at other points than the
knots. The findings of this paper stress the important part that Lobatto points
play in the C° Galerkin method for two-point boundary problems. This is
especially true for k=2, since in that case the error is of O(k*) at all Lobatto
points.

The results of this paper can be easily applied to the case of two-point
initial boundary problems (see [2]) and probably to other cases, such as
nonlinear boundary problems.
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